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Abstract. This paper introduces a simple model describing the cluster growth in supersonic expansions.
The predicted terminal mean cluster size is compared to the available data in the case of argon. The
agreement between the model and the experimental results requires that the cross-section describing the
sticking of an atom on a cluster of size N scales like Nα with α in the range 0.34–0.44, well below the
α = 2/3 predicted by the simplest geometrical scaling argument. We explain this unexpected result in two
steps. First, using Monte Carlo simulations, we check that the potential between an atom and a cluster
is accurately represented by the Gspann and Vollmar potential, even at finite temperature. Then, using
Langevin’s approximation, we show that the sticking cross-section scales like N1/3 for small to moderate N
values and switches to the geometric scaling N2/3 for very large N values. The crossover between these two
scalings occurs when N ≈ 103 for argon, but the mean exponent α over the size range 1–104 is 0.46. This
N scaling of the sticking cross-section should play an important role whenever condensation is important
as it modifies the kinetics of the early stages.

PACS. 34.50.-s Scattering of atoms, molecules, and ions – 36.40.-c Atomic and molecular clusters –
64.60.Qb Nucleation

1 Introduction

Supersonic expansions are very commonly used to pro-
duce clusters of atoms and molecules. The number N of
monomers in a cluster can be easily varied by changing
the parameters of the source (its temperature, its pres-
sure, the nozzle diameter and shape). A very wide range
of sizes N can thus be covered from a few unities up to al-
most any value. Several works [1–7] have been devoted to
the measurement of the mean size 〈N〉 with the source pa-
rameters, the results covering the range 1–104 in the case
of argon. Many results are available in the particular case
of permanent gases, mostly rare gases, because the source
pressure can then be easily varied in a very wide range.
The striking point is the very rapid variation of the mean
size 〈N〉 with the source pressure p0. Several empirical
scaling laws [5] have been proposed to relate the cluster
mean size 〈N〉 to a scaling parameter Γ ∗ introduced by
Hagena, see reference [8] and references cited therein. In
the case of argon, this scaling parameter is given by [5]:

Γ ∗ = 1646p0d
0.85
eq /T 2.2875

0 , (1)
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where the source pressure p0 is expressed in mbar, the
equivalent diameter deq of the nozzle in micrometer and
the source temperature T0 in kelvin. Expressions analo-
gous to equation (1) for most gases of interest have been
given by Hagena and coworkers [9].

In Section 2, we have developed a simple model for
cluster growth in such an expansion. This model gives a
relation between the cluster size and the source condi-
tions, and this relation depends on the relation between
the sticking cross-section and the cluster size. The sur-
prising feature is that the model reproduces the observa-
tions only if this cross-section is proportional to Nα with
α ≈ 1/3 and not with α = 2/3 as the usual dimensional
argument would predict: the scale length in a cluster of
size N increases like N1/3 and a cross-section, being of
the dimension of an area, should behave like N2/3.

This experimental evidence may not be fully convinc-
ing as it assumes the validity of our simple model. We
have therefore demonstrated this property. In a first step
(Sect. 3), we calculate the atom-cluster potential at finite
temperature using the potential of Gspann and Vollmar
[10,11] and numerical simulations. Then, in Section 4, us-
ing this potential function and a Langevin-type calcula-
tion, we have estimated the capture cross-section of an
atom by a cluster of size N . The calculated cross-section
increases with cluster size as N1/3 at relatively low N
values when the dominant effect is due to the long-range
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1/r6 potential. As expected, a N2/3 behaviour is finally
observed for sufficiently large N values. In the case of ar-
gon, the crossover between these two regimes occurs near
N ≈ 1000, and this is in agreement with the interpretation
of the experimental results done with our model.

2 Simple model for cluster growth in free jets

2.1 Model

To describe the growth of a cluster during a supersonic
expansion, the simplest model one can think of is the fol-
lowing. In a first step, very small clusters are formed by
3-body collisions: this step will not be discussed as it does
not limit the final size. In a second step, some of these
very small clusters grow by addition of individual atoms
following the reactions:

AN +A −→ A∗N+1 (2)

where the ∗ indicates a cluster with a large internal energy.
These clusters are stabilized by evaporation of a hot atom:

A∗N+1 −→ AN +A. (3)

In this matter, our model differs from other models for
cluster growth [1,8,9,12] because we do not consider the
possibility that a bimolecular gas-cluster collision can sta-
bilize the cluster, and we treat unimolecular evaporation
as the only stabilization process. This seems a realistic
idea if one considers the evaporative ensemble theory of
Klots [13] as well as dynamical simulations [14].

Provided that there are on average more addition
than evaporation processes, the clusters grow. This ki-
netic scheme can be described by the following equation
relating the average cluster size N to the local monomer
density n1:

dN
dt

= n1(t)σNvr. (4)

Here σN is the effective cross-section describing the stick-
ing collision of an atom on a cluster of size N , resulting
from the total effect of capture and evaporation processes.
Equation (4) means that we assume the limiting step in
the kinetics of cluster growth to be bimolecular collisions
which add atoms to the cluster, so that the kinetic be-
haviour is dominated by bimolecular processes only. This
point will be further discussed in Section 4.2.

This effective cross-section should be a fraction of the
capture cross-section which scales with N like Nα, as
shown below. Therefore we can write:

σN = σ1N
α. (5)

The equation describing the variations of N is easy to
integrate if we make a series of simplifying assumptions.
First of all, we assume that the monomer density n1(t)
is the free jet value, with negligible depletion. Using the
results of references [15,16], when the distance z from the

nozzle is considerably larger than the nozzle diameter d0,
(z � d0), the density n1(z) is given by

n1(z) = n0f(z∗), (6)

where z∗ = z/d0 and with the function f(z∗) given by

f(z∗) = z∗−2

[
2

(γ − 1)A2

]1/(γ−1)

, (7)

γ being the specific heat ratio. A is a parameter deduced
from flow simulations. From now on, we consider only
the case of a monoatomic gas with γ = 5/3. The value
of A in this case is available: A = 3.26 following [15]
and A = 3.337 following [16]. Using this last value of A,
equation (7) becomes f(z∗) = 0.14z∗−2. The hydrody-
namic flow velocity rapidly reaches its asymptotic value u
given by

u =
[

2γkBT0

(γ − 1)m

]1/2

=
[

5kBT0

m

]1/2

, (8)

so that we can make the usual assumption that the dis-
tance z from the nozzle and the time t are linearly related,
z = ut. The local temperature is given by an equation sim-
ilar to the one giving the density:

T (z) =
[

2
(γ − 1)A2

]
z∗−2(γ−1)T0

= 0.27z∗−4/3T0 (9)

in the present case of a monoatomic gas. The application
of equations (7–9) to polyatomic gases is possible only
if the ratio of specific heats is constant, an assumption
which is usually not correct. The equation giving T (z)
ceases to be valid as soon as condensation starts. In the re-
gion where the clusters are formed, the local density n1(z)
and the local temperature T (z) must follow the border
of the condensation domain (this should be very close to
the usual liquid-gas or solid-gas coexistence curve, slightly
corrected by the finite size of the clusters). As this curve
is almost vertical in the density-temperature plane, the
internal temperature of the beam should be almost con-
stant and we note Tc its value. Obviously this is a rough
approximation, and one should not forget that the beam
is not in thermal equilibrium, the gas being colder than
the cluster. The equation T (z) = Tc will be used to de-
termine at which position zc condensation starts (we note
z∗c = zc/d0). We can assume that the relative atom-cluster
velocity vr has a constant value given by the usual formula
(it is a good approximation to replace the atom-cluster re-
duced mass by the atomic mass m as soon as the cluster
size N is not too small):

vr =

√
8kBTc

πm
· (10)

Changing to the z∗ variable, the equation giving N can
be written as

dN
dz∗

= 0.14n0σ1d0
vr

uz∗2
Nα. (11)
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The integration of this equation is straightforward. It
should be made only for z∗ values greater than z∗c . The
final value Nf of N is given by:

Nf =
[

0.14n0σ1d0vr

(1− α)uz∗c

]1/(1−α)

= Γ
1/(1−α)
th . (12)

We have introduced a “theoretical” Γ parameter Γth

defined by

Γth = 0.14n0σ1d0vr/ [(1− α)uz∗c ] . (13)

We will show in Section 4 that, within a constant multi-
plying factor, this parameter is very close to the scaling
parameter Γ ∗ introduced by Hagena [8,12] from an anal-
ysis of the kinetics of free jets expansions.

The experimental results described in references [4–6]
can be represented by scaling laws of the type:

Nf ≈ Γ ∗β . (14)

The data collected by Lallement [4] covers a range of
source pressure from 2 to 30 bars and of N values from 50
to 4000. From this plot, we have deduced a β value equal
to β = 1.51. The data collected by Benslimane [6] extends
this range to 30 bars and N = 7000 and we have found
that it is very well represented by a slightly larger value
β = 1.64. The published values [5] (and references therein)
of β are β = 1.64 for low Γ ∗ values (350 < Γ ∗ < 1800)
and β = 2.35 for larger Γ ∗ values (Γ ∗ > 1800). This last
scaling law is not in very good agreement with the data.
An other scaling law fits better the experimental data:
N = exp

[
−12.83 + 3.51(lnΓ ∗)0.8

]
, and it is easy to verify

that, for this law, the logarithmic slope β decreases from
1.88 to 1.80 when Γ ∗ varies from 1800 to 104.

We can deduce an estimated value of α from these
experimental results: α = 1 − β−1. We thus obtain val-
ues in the range α = 0.34–0.44 when β covers the range
1.51–1.80. These α values are slightly larger than 1/3 and
considerably lower than the values 2/3 predicted by the
simple geometric scaling law described above.

2.2 Discussion and refinements of the model

A severe assumption of the model described above is that
it assumes no depletion of the monomer density by for-
mation of the clusters. This assumption is not verified
experimentally. The experiments are also able to mea-
sure the residual content of monomers in the beam and
the results of such measurements are that the residual
monomer content is negligible when the source pressure
is large. Typically, for pure argon near ordinary tempera-
ture, with a nozzle diameter equal to 0.1 mm, this occurs
for p0 > 7 bar [4,17]. This means that we should refine our
model to take this depletion into account. We introduce
the cluster density ncl(z) and we write the conservation of
the total atomic density as:

n1(z) + ncl(z)N(z) = n0f(z∗) (15)

which can be re-expressed, using the fraction of monomers
x1(z) = n1(z)/n0f(z∗) and the fraction of clusters
xcl(z) = ncl(z)/n0f(z∗), as

x1(z) + xcl(z)N(z) = 1. (16)

The depletion of monomers due to the cluster growth
leads to:

dx1

dz
= −xcl

dN
dz
· (17)

To write this equation, we have made the assumption that
we could neglect the variation of the number of clusters
along the flow. This is surely wrong in the beginning of the
expansion, but this seems a reasonable assumption in the
following stages. With the equation giving the variation of
N with z, we have now a set of three nonlinear equations.
After elimination of xcl, we get:

dN
dz∗

= x1N
αΓthz

∗
c f(z∗); (18)

dx1

dz∗
= −x1(1− x1)Nα−1Γthz

∗
cf(z∗). (19)

This system of nonlinear equations has an interesting
property. For any value of α 6= 0, we can introduce
a reduced value N∗ of the cluster size N defined by
N∗ = NΓ

1/(1−α)
th . With this change of variable, the system

takes a form independent of the parameter Γth:

dN∗

dz∗
= x1N

∗αz∗cf(z∗); (20)

dx1

dz∗
= −x1(1− x1)N∗(α−1)z∗cf(z∗). (21)

The fact that this system is independent of the parameter
Γth proves immediately that the final value of N is pro-
portional to Γ 1/(1−α)

th . Therefore the measurement of the
slope of the cluster size N as a function of Γth should give
access to α even when the monomer content of the beam
is very small at the end of the expansion.

3 Cluster-atom interaction at finite
temperature

In order to calculate the sticking cross-section of an atom
on a cluster of size N , we first need to estimate the po-
tential undergone by the atom approaching the cluster.
Indeed, what we especially need is its variations with the
distance r, as well as with the size N itself. At zero tem-
perature, one can model the interaction between any two
argon atoms by the commonly used Lennard-Jones (LJ)
12–6 potential. A simple model for the cluster is to repre-
sent it by a sphere of homogeneously distributed LJ cen-
tres. This model, first proposed by Gspann and Vollmar
[10,11], leads to the following expression for the interac-
tion between an ArN cluster and an Ar atom separated
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by distance r to the cluster centre of mass:

VN (r) = C12
r6 + 21r4r2

0/5 + 3r2r4
0 + r6

0/3
(r2 − r2

0)9

− C6

(r2 − r2
0)3
· (22)

The parameters C12, C6 and r0 are size-dependent and
their values are given by C6(N) = 4Nεσ6, C12 = 4Nεσ12

and r0(N) = (3/4πρ)1/3[N1/3 − 1] = r∗[N1/3 − 1] where
ε and σ are the LJ parameters for the atom-atom poten-
tial: V1(r) = 4ε[(σ/r)12 − (σ/r)6]. ρ is the atomic density
in the solid state, and r∗ = 2.08 Å for argon [5], which
corresponds to 0.62 reduced units σ. As N goes to ∞,
this potential also recovers the correct form of the inter-
action between an atom and a surface [18]. Gspann and
Vollmar (GV) introduced this potential to calculate atom
or molecules-clusters scattering and sticking cross-sections
[10,11]. The GV potential has been used by Buck and
Krohne for the experimental determination of the size of
argon clusters probed by scattering of a helium molecular
beam [5].

Rigorously, this model can only be valid at zero tem-
perature, as the cluster cannot reorganize by itself to per-
mit merging of the approaching atom below r ≤ r0. In
reality, even for high pressures, temperatures are nonzero
inside the expansion, and the atoms inside the cluster can
move, especially when the cluster is in a “liquidlike” ther-
modynamical phase.

Another problem is that clusters are non spherical,
at least up to a reasonable size of several hundred ar-
gon atoms. Instead, they may frequently have icosahe-
dral shapes, or some elements with pentagonal symmetry.
When such a case occurs (e.g. with the perfect multilayer
Mackay icosahedra N = 13, 55, 147...), the interaction
with an external atom strongly varies with the cluster ori-
entation, and the observed potential is different depending
on whether the atom is closer to a vertex, an edge or a
face [5]. This concerns specially the repulsive contribution
of the potential (C12 term) which is important at short
distances.

To circumvent this problem, a possible idea would be
to perform averages on the cluster orientation. However, as
the influence of the extra atom gets stronger as the atom
gets closer, it could be necessary to give unequal weights
to different orientations, so that these weights should be
functions of the distance r. Such an approach seems quite
non trivial.

A much more straightforward way to test the validity
of the GV potential of equation (22) in the “real case”
of finite-temperature clusters is the direct numerical sim-
ulation. In a first step, we still need to investigate the
zero temperature case to serve as a reference for the fur-
ther free-energy calculations. At zero temperature, the
absolute interaction energy at fixed distance r from the
atom to the cluster center of mass can be calculated with
the usual global optimization methods [19]. Constraining
forces must then be added to keep the distance r to a pre-
scribed value. When r is large enough, the cluster struc-
ture is not modified by the extra atom, only its orientation

2 2.5 3 3.5 4
r/σ

−48

−47

−46

−45

−44

V
/ε

Fig. 1. Minimum-energy path for the Ar13+Ar system at long-
distance and zero temperature. The three configurations shown
are stable at fixed distance between the cluster centre of mass
and the extra atom.

can rearrange. As r decreases, isomerization processes (re-
orientations) may occur to further stabilize the ArN+Ar
configuration. Finally, when r gets below the typical clus-
ter radius, the N + 1 atoms cannot be distinguished and
the optimization becomes meaningless.

Such spontaneous isomerization are seen, for instance,
in the case of the icosahedral Ar13 cluster. At long dis-
tance, the fourteenth external atom is on a C5 axis in or-
der to be closer to a surface atom. Below r ∼ 2.2σ (about
7.5 Å with the standard value 3.4 Å for σ), the icosahedron
tends to rotate, permitting the colliding atom to lie over
an edge. At last, below r ∼ 1.95σ (about 6.7 Å), it rotates
again to have the 14th atom located on the center of a
triangular facet. The corresponding interaction energy is
plotted in Figure 1 along with the three described config-
urations. Obviously, as the cluster size increases, the num-
ber of possible isomerizations also rapidly increases. These
phenomena are characteristic of “real” clusters made of a
finite number of atoms, and any comparison to the pre-
vious continuous model should be limited to values of r
ensuring only a single isomer at zero temperature.

The calculation of effective interaction energies at fi-
nite temperature relies on specific methods. The potential
of mean force (PMF) is the free-energy difference ∆A be-
tween a configuration at distance r and a reference con-
figuration at distance r∗ which may be ∞. The simplest
way to compute the PMF is the thermodynamic integra-
tion technique. This method [19] provides the derivative
∂A/∂r along the reaction coordinate {r} with the follow-
ing equation:

∂A

∂r
(r, T ) =

〈
∂V

∂r

〉
r,T

(23)

where V is the potential-energy function, T the temper-
ature and 〈·〉r,T the canonical average at fixed r and T .
Knowing the derivatives of A, the PMF can be numeri-
cally estimated up to an additive constant over the entire
path of {r}. A more complete description of this method
(and others such as umbrella sampling) applied to similar
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Fig. 2. Potential of mean force A(r, T ) at T = 0.2ε/kB

with the reference A(∞, T ) = 0. The dots are the results of
MC simulations, the dashed lines are the fits on the form of
equation (22).

problems can be found in references [19,20], as well as ref-
erences inside. A possible generalization of these methods
to rotating systems (including the conservation of angular
momentum) has also been recently made [20].

Using also a constraint method, Weerasinghe and
Amar investigated the effective potential energy between
an argon atom and an argon cluster at finite temperature
[21]. Due to the finite size of the cluster, they found that a
pure attractive form C6/r

6 was inappropriate to describe
the interaction at long distances. Instead, they proposed
another expression fitting well with the simulation, namely
C6/(r− r0)6. Except in the vicinity of r0, this expression
is pretty close to the result of the GV potential.

We performed a series of Metropolis Monte Carlo sim-
ulations on the systems ArN+Ar, for the set of sizes
N = 13, 38, 55, 75 and 147, and for the four reduced
LJ temperatures T = 0.1, 0.2, 0.3 and 0.4ε/kB. The three
“magic” sizes 13, 55 and 147 correspond to Mackay multi-
layer icosahedra, respectively with one, two and three lay-
ers. Ar38 has a truncated octahedral structure at T = 0,
and Ar75 is decahedral [22]. Except for N = 75, all sizes
investigated here are more or less spherical, while Ar75 is
strongly oblate.

For each size and temperature, the range of r was
about 10σ long, discretized into 100 bins δr of equal width.
At fixed r, the MC simulation consisted of 105 cycles
(1 cycle = N + 1 individual steps) whose 2 × 104 first
cycles were discarded for allowing thermalization.

We have plotted in Figure 2 the results of our simula-
tions for the five clusters, at the temperature T = 0.2ε/kB.
The fit of these curves on the form given by equation (22)
is also given on this figure. In each case, we carried out a
least-square minimization to find the parameters C6, C12

and r0 fitting best to the simulation points. It is worth
noting that the fits are very good, leading to stable val-
ues of the three parameters when one changes the initial
conditions in the numerical experiment. Such decent fits
ensure the validity of the continuous model previously de-
scribed.
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1/3
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r 0

(a)
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Fig. 3. (a) C6 parameters fitted from the simulation results
on the continuous model as a function of size N . The linear
curve is simply C6(N) = 4N . (b) Same results for the C12

parameters, with the linear curve C12(N) = 4N . (c) Effective
radius r0 versus N1/3 from the continuous model. The linear
curve is r0(N) = 0.62[N1/3 − 1]. For all graphs, the results are
shown for the two temperatures T = 0.1ε/kB (empty squares)
and T = 0.4ε/kB (full squares).

In Figure 3 we have displayed the variation with N
of the effective coefficients C6 and C12 at finite temper-
ature, as well as the variation with N1/3 of the effec-
tive radius r0 of the cluster. As can be seen from Fig-
ures 3a and 3b, both C6 and C12 grow linearly with N
in the whole range 13 ≤ N ≤ 147. The growing rate is
about 4.0 at the lowest temperature, and slightly decreases
as T rises, especially above melting, for T > 0.3ε/kB.
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Fig. 4. Logarithmic plot of the sticking cross-section for the
GV potential, as a function of the size N of the cluster, for
three values of the adimensional parameter c = C6at./K(r∗)6.
Solid line: c = 10; dotted line: c = 100; dashed line: c = 1000.
The limiting behaviours at small and large N are shown for
c = 100.

This is not surprising, and similar temperature smooth-
ing effects were observed in a previous thermodynamical
study of the cluster-cluster interaction [19]. We see in Fig-
ure 3b that the error bars affecting the calculation for C12

are quite larger than those for C6. This is in fact a sim-
ple consequence of the fact that the repulsive contribu-
tion is much smaller than the attractive one at such long
distances. Figure 3c exhibits a linear behaviour of the ra-
dius r0 versus N1/3, apart from the value for N = 75
and T ≤ 0.3ε/kB. At this very special size, the cluster is
strongly non spherical, and the effective radius is smaller
than in a spherical configuration. When T is increased
above 0.3ε/kB, the argon cluster melts and becomes more
spherical; its effective radius increases. Excluding the data
for N = 75, a linear fit of the variations of r0 with N1/3

approximately leads to r0 ≈ 0.62σ[N1/3 − 0.98], which is
in very good agreement with the GV model. Including the
data corresponding to N = 75 gives a slightly different law
as r0 ≈ 0.59σ[N1/3−0.93], but still in agreement with the
GV model.

Of course, extensive numerical calculations are difficult
to achieve for clusters larger than 147 atoms. However,
as the structure should become more and more spheri-
cal (first icosahedral, then FCC-bulklike), the linear be-
haviours of C6 and C12 with N , of r0 with N1/3 have
no reason to drop in the large cluster regime. Further-
more, as the size increases, the continuous model is less
and less approximate. Hence the Gspann-Vollmar poten-
tial of equation (22) can be satisfactory chosen to repre-
sent the interaction between an argon atom and an argon
cluster, even at finite temperature and for rather small
sizes, provided that it is not used when the distance to
the cluster is small enough to allow for isomerizations.

4 Theoretical cross-section

4.1 Calculation

Our calculation is based on the following method, which
dates back to Langevin. If the centrifugal term L2/2µr2

(with µ the reduced mass) is added to the potential, the
effective potential shows a centrifugal barrier of height
E1(L) at a distance r1(L) depending on the angular mo-
mentum L = µbvr, where b is the impact parameter. Once
the atom overcomes this barrier, it may be considered to
be stuck to the cluster, since the extra energy coming from
the attractive part of the potential is very easily dissi-
pated in the internal degrees of freedom of the cluster. To
a given initial kinetic energy of the colliding system K,
corresponds a maximum impact parameter b0, given by
K = E1(L) for L2 = 2µKb20. The sticking cross-section is
then σ = πb20. The relevant equations are the following:

2Kb20 = r3
1V
′(r1); (24)

K(r2
1 − b20) = r2

1V (r1); (25)

from which r1 is to be eliminated. Let us begin with the
long range part of the potential V (r) = −C6/r

6, with
C6 = NC6at. proportional to N , the size of the cluster.
We get σ = 3π(C6/4K)1/3, with a N1/3 dependence for
the cross-section. This first approximation breaks down
when the cluster is big enough so that b0 − r0 becomes
small compared to the cluster radius r0. Of course, in this
later case, the cross-section is close to the geometrical one
and is given by σ = πr∗

2
N2/3. The crossover size Nc is

obtained when both cross-sections are equal, that is:

Nc =
27C6at.

4r∗6K
=

27
4
c, (26)

where we have introduced the non-dimensional parameter
c = C6at./r

∗6K.
In order to find the interpolation between theN1/3 and

N2/3 behaviours, we study the case of the attractive part
of the GV potential V (r) = −C6/(r2 − r2

0)3, still with C6

proportional to N and r0 = N1/3r∗ proportional to N1/3.
We get

b20 =
3r4

1C6

K(r2
1 − r2

0)4
; (27)

b20 =
3r4

1

2r2
1 + r2

0

· (28)

It is easy to eliminate b0 to obtain the following equation:

C6

K
(2r2

1 + r2
0) = (r2

1 − r2
0)4 (29)

which can be numerically solved easily. The resulting
cross-section as a function of N is plotted in Figure 4 for
different values of the adimensional parameter c. Even for
c = 10, the N2/3 law is reached at a very highN value (104

or so). Actually, the mean exponent in the range N = 1–
104 varies from 0.42 at c = 1000 to 0.52 at c = 10.
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4.2 Results and crossover size for argon

Let us first discuss the expansion process in the case of
argon. For an expansion starting near ordinary temper-
ature and with moderate values of the source pressure
p0 (about 1 bar) and of the nozzle diameter d0 (about
0.1 mm), it is well known that the final parallel temper-
ature in the beam is of the order of 1 K, although the
isentropic curve cuts the condensation domain near 60 K.
This very low final temperature does not lead to conden-
sation because the density in the beam is low. If now the
source pressure is larger, condensation occurs and the fi-
nal temperature of the clusters has been measured [3] to
be 32± 2 K, a value corresponding to the solid-gas equi-
librium near 10−6 mbar, estimated by extrapolating the
saturation pressure equation of reference [23].

When condensation affects a large fraction of the ex-
panding gas, after probably a brief phase of overcooling
due to a delayed start of the condensation process, the
temperature Tc should follow the condensation curve from
about 60 K down to a final value close to 30 K and should
not be constant as assumed in our simplified model. Know-
ing Tc, we can deduce the value of z∗c from equation (9).
It appears that the order of magnitude of z∗c thus deduced
is in the range of unity, whereas equation (9) is valid only
for large z∗. However, any refinement of these questions
is beyond the scope of the present paper and in any case,
the fact that we want to compare our model to a simple
scaling law makes these refinements useless at the present
state of our understanding.

As soon as we know the value of the condensation
temperature Tc, we can estimate the cross-section and
the crossover size Nc which is the limit between the two
regimes characterized by the value 1/3 and 2/3 of the
exponent α. We use the value C6at. = 65 au given by
Dalgarno [24]. Taking for the mean value of the atom-
cluster kinetic energy K = kBTc with Tc = 32± 2 K the
temperature given by Farges et al. [3], we get c ≈ 160,
which leads to a crossover size Nc ≈ 1000, and a mean
scaling exponent α = 0.45 over the size range 1–104, in
very good agreement with the experimental results for α.

Let us re-express now our “theoretical” Γ parameter
using the results of the previous paragraph. In the regime
valid at low N values, the scaling exponent of the cross-
section is α = 1/3 and the relative atom-cluster kinetic
energy is proportional to kBTc. Neglecting various con-
stant multiplying factors, we get

Γth ∝ p0d0C
1/3
6at.T

11/12
c /T

9/4
0 . (30)

If we compare the exponents of p0, d0 and T0 in equa-
tion (1) giving Γ ∗ and in the present equation giving Γth,
the comparison is very favorable, the only noticeable dif-
ference being on the exponent of d0. The d0 exponent is
q = 1 in Γth, and q = 0.85 in Γ ∗. The value q = 1 is
expected [1,8,9,12] in the case of a cluster growth model
based only on bimolecular processes, while q = 0.5 cor-
responds to the opposite limit of unimolecular reactions.
The oversimplifier character of our model appears clearly
here, but we think that our model is a sound first step in

understanding the mean cluster size produced by conden-
sation in supersonic expansion.

5 Conclusion

Let us recall the main results obtained in the present
paper:

1. a simple model of condensation has been developed
and in this model the final cluster size depends on the
source parameters in a way very similar to the semi-
empirical law introduced by Hagena;

2. from this model and experimental results concerning
the mean size of the clusters, we have deduced the N -
dependence of the sticking cross-section of an atom on
a cluster of size N . This dependence is well represented
by the equation σN = σ1N

α with α values slightly
larger than 1/3;

3. a careful Monte Carlo study of the atom-cluster inter-
action potential has proven that the interaction poten-
tial introduced by Gspann and Vollmar is a very good
approximation of the pair-wise additive Lennard-Jones
potential, even at finite temperatures;

4. this analytic potential has been used to calculate the
sticking cross-section in the Langevin approximation.
The cross-section behaves like N1/3 up to rather large
N values and switches to the geometric scaling N2/3

for very large N values. The cross-over between these
two behaviours occurs near N ≈ 1000 for argon. The
very late onset of the geometrical scaling is an un-
expected result which is surely important for the un-
derstanding of cluster growth in supersonic expansions
and foreign atom pick-up by clusters [25] but also ev-
erywhere condensation is important. As such, this re-
sult can be interesting for modelling aerosol formation
in many environments and this result will be important
in very different fields: atmospheric physics, chemical
engineering...

Finally, an interesting analogy with the laser can be
done, as this is one of the best-known case of a dynamical
phase transition. In the case of a single-mode laser, the
interesting function is the probability distribution of the
number n of photons in the mode: this function changes
shape strongly from a quasi-thermal monotonously de-
creasing function when the laser is well below threshold
to a function peaked near a large n value when the laser
is over threshold. For the molecular beam, the function
of interest is the distribution of cluster size N . For low
source pressures, the beam contains a very small fraction
of dimers and larger clusters and the distribution of clus-
ter size is a rapidly decreasing function of the size N , as
shown for instance by the experiments of Vasile and Stevie
[26]. As soon as condensation starts, the distribution func-
tion changes shape, with a peak near a large N value and
a peak for the monomer N = 1. Obviously the analogy
is not complete and this is natural because the nonlinear
equations describing the two problems are different.
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